GIP!Z HUP La Fe i")

The Influence of Al in Oncology
Multidisciplinary Teams Decisions

Leonor Cerda Alberich, PhD

Co-Pl and Head of Computing & Al @ Biomedical Imaging Research Group
La Fe Health Research Institute (Valencia)

11.06.2025




—

230 ACIM oy
GID'Z HUP La Fe i"/

B2 Inputs E& Output 1 BB Output 2
MR Images Tumor Segmentation Hallmarks
E& Output 3
o Diagnosis - Prediction BB Output 4
= (" Classification ) Decision on treatment
Phenotype vs. (Probability of\

Genotype treatment

|: Aggressiveness response
; Confidence
Prognosis
\_ J level

; modification in
) Survival type and way

Cellularity .

\Impact in RT)
Angiogenesis — /
-

n ——/ |=¢
O
)

N t End to End Learning

2/total



i' HJ\PC'L'Z'FQ ‘Q\‘"‘)’ Image processing pipeline

H\}T CION E A EN IMAGEN

Source Images Image Preparation Image Processing Data Integration Predictions
T2w — T2 fat-sat Noise filtering and field Radiomics Prognosis models
inhomogeneity correction Clinical
- T Original NLMF+N4 T
21Dj 17
> B
O] ;L
(@] § i
= go4 ﬁ‘L L
o . . . g, l_'w 1
E CET1 Signal normalization and L |
g resampling % e 4w noosuwié:(d;;ojn 1200 1400 1800
o . . I
= original Diagnostic models
— Genomics - T
FC6 -FC7 = 8192 Deep Features ]
Dynamic signal "

DCE -
Z
o
4 s2 §2 Radiogenomics
o e S
w 2z 6 £z
* AN g Pathology

DWI
pa
o
(7]
D
i
L
° 3/total




Manual correction Al segmentation Source image

Mask comparison

Imaging and DSC

Case 1

Location: abdominopelvic
Timepoint: diagnosis

MR equipment: Siemens
Magnetic field strength: 1.5T
Weighting: T2 SE

DSC: 0.957

Case 2

Location: cervicothoracic

Timepoint: diagnosis

MR equipment: GE
Magpnetic field strength: 3T
Weighting: STIR

DSC: 0.948

Location: abdominopelvic
Timepoint: treatment

MR equipment: Siemens
Magnetic field strength: 1.5T
Weighting: T2 SE

DSC: 0.187

Case 4

Location: abdominopelvic
Timepoint: treatment

MR equipment: Philips
Magnetic field strength: 3T
Weighting: T2 SE

DSC: 0.980

- Aldetection and

segmentation

To locate and segment
neuroblastic tumors on T2/T2-
weighted MRI images, regardless
of the location and characteristics
of the MR scanner.

DSC at diagnosis is 0.999, and
after treatment is 0.902.

Veiga-Canuto, D.; Cerda-Alberich, L.; et al.
Independent Validation of a Deep Learning nnU-
Net Tool for Neuroblastoma Detection and
Segmentation in MR Images. Cancers 2023, 15,
1622.
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* Homogeneity
* Correlation

Gray Level Run Length Matrix (GLRLM)

Radiomic features extraction e | Prmmmm——————————————————- .
1 Shape I | Intensity :
: * Volume : : * Minimum * SD 1
| * Elongation : i © Maximum * RMS :
I+ Sphericity | I+ Mean * Skewness :
: * Surface area : : * Variance * Energy :
1 * Surface-Volume Ratio I | * Kurtosis * Entropy |
| * Flatness ! | * Median ¢ Uniformity !
E Gray Level Cooccurence Matrix (GLCM) :
:. Joint energy * Autocorrelation * Inverse variance :
i Contrast * Sum average » Difference entropy :
I« Joint entropy . . I
: * Sum variance * Cluster Prominence :
! .

* Maximum probability

1
I

I

: * Small area emphasis * Gray level variance :

: * Large area emphasis * Zone variance :

: * Gray level non-uniformity * Zone entropy I

: * Size zone non-uniformity * Low / High gray level zone :

I * Zone percentage emphasis :

' ----------------------------------------------- -

: Gray Level Size Zone Matrix (GLSZM) i

. o e * Short run emphasis * Runentro I

Gray-level discretization : X phas ropy I

) . . T . 1 ¢ Longrunemphasis * Runvariance :

F'X?d b'n_ W'd_th to ma'_nt_a'n a d'recft : * Gray level non-uniformity * Low gray level run 1

relationship with the original intensity I+ Run length non-uniformity emphasis i
scale I * Run percentage * High gray level run emphasis : 5/total




Modeling pipeline
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ota



Glgi2™ ACIV ‘3\‘. "/f Multimodal Al models

GRUPO DE
INVESTIGACION BIOMEDICA EN IMAGEN \

Survival analysis is a collection of statistical procedures for data analysis where the outcome variable of
interest is time until an event (death) occurs.

Cross-validation results of the survival models

Explainability of the multimodal survival model

C Index Time-Dependent AUC
Features Patients
Test Test Feature Relations for OS Model ik
. MYCN ‘ g
Risk Group INRG 375 0.71+£0.03 0.71 £0.05
LDH *-’ eo® o o wmoe ® Moo
Radiomics T2W 513 0.66 £0.01 0.66 £ 0.06 RiskGroup_INRG_High * o
0 =
o ing_INSS 4 [
g Staging_INSS _ -'} .‘ ;
Clinical Variables 513 0.76 £ 0.04 0.77 £0.02 Lf,:j Firstorder-Skewness +~ es o cmmpuseem 4‘33
(0]
BoneMarrow --* P =
iomi 2W + Shape-Maximum?2Ddiameterslice ' emamto
Ra'd!omlcs T W 513 0.79 £ 0.05 0.78 £ 0.06 ’
Clinical Variables Staging_INSS_2/3 '_ ‘
Radiomics T2W + 0 0 i H z Low
Clinical Variables 513 0.90 £ 0.04 0.89 £ 0.03 Impact on Model
+ Tumor Growth

Model used: Random Survival Forest 7/total
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Al tumor detection
and segmentation

Oncologists use the
PRIMAGE platform as
a clinical decision
support system.

Source image

Neuroblastoma - Diagnosis
stratification

Diagnosis
stratification

(OS and EFS-prediction
Neuroblastoma)

Al segmentation

Mask comparison Manual correction

Imaging and DSC

Location: abdominopelvic
Timepoint: diagnosis

MR equipment: Siemens
Magpnetic field strength: 1.5T
Weighting: T2 SE

DSC: 0.957

OS5 Probability

Time-Dependent AUC

Al model prediction

Clinieal

decision support system

Overall Survival Analysis

Kaplan-Meier Curves by Predicted Risk Groups

1.0 —

0.8 ]

0.6

0.4

0.2 Risk Group

— Low
Medium
0.0 High
0 1 2 3 4 5 6 8
Time after Diagnosis (Years)
Cumulative Dynamic AUC

10

0.8

0.6

04
Outer Fold 0
Outer Fold 1

02 Outer Fold 2
Quter Fold 3
Outer Fold 4

= Mean AUC = 0.78 + 0.06
00

Neuroblastoma Panel

Diagnosis stratification
VERSION 1.0

Not given 95FSSRS
Predicted Risk Score
undefined
13-03-2018 139
30-08-2023 Female

Patient Characteristics

Imaging variables

Clinical variables

Age (months) 139
Sex Female

LDH (u) 551.0

MYCN status Not amplified
Risk group INRG High

INSS 4

Bone marrow aspirate Positive
Bone marrow trephine Positive
Tumor localization Abdomen

Tumor histology type

Neuroblastoma

Grade of differentiation

Poorly differentiated

Skewness 0.45
Maximum 2D diameter 97.00
GLCM Informational measure of correlation 0.63
GLSZM zone percentage 0.02
GLRLM graylevel non-uniformity 2922.55

1. Skewness measures the asymmetry of the distribution of values about the

mean intensity value,

2. Maximum 20 diameter measures the largest transversal diameter of the.

lesion

3. Zone percentage measures the ratio of number of zones and number of

voxels in the lesion (fraction of habitats in a lesion).

4. Gray level non-uniformity meast

ures the similarity of gray-level Intensities.

Lower values are related to more homogeneous tissues.

Representative tissue

Primary tumor automatic segmentation, defining the area where the radiomics features are extracted.

Tumor volume:157.49 cm3

Risk prediction

Clinical and radiomics features: importance of the clinical and radiomics features to make the final OS and EFS prediction.

Lo#
MYch
RiskGroup_INRG_High

Staging INSS_4

Features

BoneMarrow
Firstorder Skewness
Shape-Maximum20diametersiice

Staging_INSS_2/3
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Feature Importance for OS Prediction

Feature Importance for EFS Prediction
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Input variables: Input variables:
e Sex: Female Predicted Risk Score e Sex: Female Predicted Risk Score
* Age: 139 months , * Age: 19 months
+  LDH (IU/L): 551 Intermediate +  LDH (IU/L): 16400
« Histology: Neuroblastoma « Histology: Neuroblastoma
» Degree of differentiation: Poorly e _ « Degree of differentiation: Not differentiated

differentiated Clinical outcomes: | «  MYCN: Amplified Clinical _
. MYCN: Not amplified * Overall survival: « Primary tumor location: Abdomen inica outcomgs. |
*  Primary tumor location: Abdomen 1484 days , * INRG: High »  Overall survival:
- INRG: High *  Status: Alive - INSS: 4 201 days

« |[NSS:4 » Status: Dead

Feature Importance for OS Prediction
|

Feature Importance for OS Prediction

LDH-1.87

LDH +6.23

|

MYCN 1.8 MYCN

RiskGroup_INRG_High Firstorder-Skewness

Staging_INSS_4 Shape-Maximum?2Ddiameterslice

Features
Features

BoneMarrow BoneMarrow
Firstorder-Skewness -0.66 Staging_INSS_4
Shape-Maximum2Ddiameterslice —0.43 RiskGroup_INRG_High

+0.24

Staging_INSS_2/3 Staging_INSS_2/3

0 1 2 3 4 5 6
Impact on Prediction

-20 -15 -10 -05 00 05 1.0 15
Impact on Prediction
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 Foundation Models: Large-scale Al models trained on diverse, unannotated data that can be fine-tuned
for specific applications.

« Generative Al: A subset of foundation models that synthesizes new data (text, images, or multi-modal

content).
Foundation models can then be applied or fine-tuned for
Massive inter-connected varied downstream tasks
datasets can be colleted to . .
pre-train foundation models Foundation models 'Classmcatlon Generatlon-
are trained using Disease vs. healthy Report generation
g Radiology studies, data with little to no Ideal therapy selection Impression generation
—3 series orimages annotations Prognosis prediction Data synthesis
. - Regression Retrieval
. Reports (optional) Survival analysis Identification of similar cases
Radiation dose prediction Identification sequence types
% Clinical data (optional) Segmentation and detection
Organ and anatomical segmentation
Lesion detection

10/total
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o Hurlare SO for oncology?

« Traditional Al models require large amounts of labeled data, which is expensive and time-consuming.
» Foundation models leverage self-supervised learning to extract knowledge from vast, unstructured datasets.

» Enables transfer learning across clinical tasks with minimal fine-tuning.
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Applications in Radiology

Automated Image
Interpretation

Enhancing detection of
abnormalities (e.g.,
nodules in chest X-rays,
tumors in MRI scans).

Multimodal Learning

Integrating imaging with
genomics and clinical
data for holistic disease
modeling.

Synthetic Data
Generation

Addressing data scarcity
by creating high-fidelity
synthetic medical images.

Workflow Optimization

Al-driven report
generation, automated
segmentation, and
decision support.

Med-PaLM can
synthesize and
communicate
information from images
like chest X-rays,
mammograms, and more
to help doctors provide
better patient care.

Can you write me a report analyzing this chest X-ray?

Findings:
« Devices: None.

appear clear.

normal limits.

Impression:

Enter a question here

« Lungs: No pneumothorax. No substantial pleural effusion. Lungs
+ Cardiomediastinal: Normal heart size. Mediastinal contours within

+ Other: No acute skeletal abnormality.

No active disease seen in chest.
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Al can generate high-quality
synthetic images to train models

Data sharing

without requiring extensive real
patient data.

Create privacy-
preserved datasets

Applications include:

« Balancing datasets to
mitigate biases.

« Enhancing rare disease
detection.

* Preserving patient
privacy while enabling Al
model development.

Applications

Other uses

Research on
applicability limits

synthia

Data augmentation

Al models

Diseases

Regulatory use

Stress-testing
process

Synthetic Data for Oncology

Bias correction

Correct imbalance
in Al training data

HTA uses

Testing of different
hypothetical
scenarios

Al validation
Extend and

generalise the
validation cohort

Digital Twin uses

Lesion / pathology

simulation

Single arm CT

Synthetic control
arm for CTs

13/total
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*Prompt: “A T2-weighted MR image of
a 5-year old poorly differentiated
neuroblastoma patient with INRG =
High”

Latents

Multimodal Foundation
Model

Embedding "
Conditioned
latent U-Net

Text
Embeddings

Conditioned
Latents

Latent Seed

Gaussian Noise
(512 x 512 x 64)

Scheduler

algorithm to
add noise

Repeat N scheduler steps

*Other allowed prompts can be medical
images for the generation of a set of similar

images using the embeddings obtained from VAE decoder

the Multimodal Foundation Model

‘Q\‘""f Synthetic Data Generation

Contrastive

Learning
=+

Latent
Diffusion

Output image
(512 x 512 x 64)
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Multimodal Al for
Precision Medicine
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« Foundation models integrate multiple data types to improve diagnostic accuracy.

« Enables deeper understanding of disease mechanisms beyond single-modality analysis.

Radiology o <Biag/ectricity

/

Prognosis I"l:_"..:
Report generation

Treatment planning

Medical Chatbot n

Medical education VA

add

Surgery assistance | .Q.

v

Medical imaging @

Data from healthcare (Sec. 111) Foundation models (Sec. 1) Applications (Sec. IV) -
Otla
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Foundation models are becoming increasingly common in oncology research.
However, the biases affecting other models also affect foundation models: It is important to
pursue their development while ensuring good training and continuous validation.

Radiol =Bioe i
aaiology o ectnc.'ty \ )
@ L] @ % i Prognosis |'|‘E
2 i

@  Report generation

Pathology I
@® Treatment planning
> @  Medical Chatbot &
I . . 'j
Engoscope 7 Medical education .
@®  Surgery assistance i‘@.
® Medical imaging @

Data from healthcare (Sec. lll) Foundation models (Sec. Il) Applications (Sec. IV)
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new clinical settings. _ Functional®y 9%55 &F - £
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Compliance with Al governance o@o\“‘(’ ECE S
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B & o 2 3% 0w
- Data Privacy & Security: Protecting N\ $ & %%%5 o
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A user-friendly platform developed to improve user experience
during clinical validation (timing per case evaluated with/without Al,
potential result biases, feedback and comments through a survey.
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PROSTATE

Al TRUST ASSESSMENT

Al Prediction
CD This patient's image has been analyzed by the
Al model and predicted as: High Risk e

Select the risk for this patient:

HIGH
RISK

Auto-select Al Prediction

Your Assessment
You have classified this patient as: High Risk

(50)]

@ Agrees with Al

Age 75
Previous Cancer No
PSA 9.79 (ng/mL)
PSA Date 2015-01-01

ECOG performance status -
grade 0

ECOG
ECOG Date 2014-12-08
PIRADS 5

T

Al TRUST ASSESSMENT

Al Prediction

This patient's survival has been predicted by the

Al model as: 16 months (High survival) o

Drag to select the number of months of survival for this
patient:

6 12

O More than 18 months

Auto-select Al Prediction

Your Assessment

® vou have classified this patient's survival as:
~ 16 months (High survival)
© Agrees with Al

Age 55
Gender MALE
Smoking status Unknown
ECOG performance status Unknown

Previous history of other
Yes

cancer o
«

Non-small cell carcinoma of

BREAST

Al TRUST ASSESSMENT

Al Prediction
This patient's image has been analyzed by the
Al model and predicted as:
Ductal carcinoma in situ (DCIS) o

Select the histology subtype for this patient:

Invasive ductal carcinoma (IDC)

Auto-select Al Prediction

Your Assessment

@ You have classified this patient as:
(30) Invasive ductal carcinoma (IDC)

Age 67
Gender FEMALE

Previous history of other
cancer

Yes

ECOG Performance status Unknown

Clinical T Unknown

Clinical N Unknown

Clinical M Unknown

Al TRUST ASSESSMENT

Al Prediction

This patient's image has been analyzed by the
Al model and predicted as: T1-T2 NO MO o

Select the pTNM for this patient:

T1-T2 NO MO

B View TNM Info Auto-select Al Prediction

Your Assessment

@ You have classified this patient as:
TI-T2 NO MO

Age
Gender FEMALE

Previous history of other
cancer

No

ECOG Performance status Unknown
ECOG Date Not evaluated
Location Cecum
Location ascending colon

Location hepatic flexure

RECTUM

Al TRUST ASSESSMENT

Al Prediction

This patient's image has been analyzed by the Al
model and predicted as: Vascular Invasion: Yes
Mesorectal Invasion: Yes o

Vascular Extramural Invasion:
No
Mesorectal Fascia Invasion:

No Yes

Auto-select Al Prediction

Your Assessment

. You have classified this patient as:
1)  vascular ion: Yes

Age
Gender

Previous history of other
cancer

No

ECOG Performance status Unknown

ECOG Date Not evaluated
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e (Cases: 1,553 (5 tumors).
 Observers: 77 (34 radiologist and 43
physicians).
« Different Experience Level (14: <5
i year, 7: 5-10 years, 56: >10 years).
 54% improved, 17% unchanged, 29%
ch M%N

BBBBBB

worsened.
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Al versus humans
to automatically
perform repetitive
healthcare tasks

Al cooperates with
humans to jointly

energize challenging
healthcare tasks

WaeV
V%
Implementation

ot

Static Al model is

fixed to specific
healthcare tasks

Dynamic Al model

adapts to general
healthcare tasks

The Future-of Al-in Oncology

Application

Emphasis

Explore Al methods
for capability

In ideal settings for
specific issues and

certain situations

In real world for
complex issues and
uncertain situations

Trust Al behaviors
for responsibility

-Cv
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v Al will increasingly act as a virtual assistant for oncologists.
v" Foundation models and GenAl will evolve to provide real-time, personalized diagnostics.

v Integration with radiology, robotic surgery, digital pathology, and genomics will reshape
precision medicine.

v' Al's success depends on human trust: Transparency, accountability, and validation will be the
determining factors for adoption.

v" The biggest challenge is not just building better Al but rethinking how we integrate Al into the
clinical workflow in ways that are meaningful, ethical, and sustainable.

v Future Al ecosystems will rely on collaboration (among Al developers, clinicians, and
regulators) and continuous validation.
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