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Image processing pipeline
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AI detection and 
segmentation
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Veiga-Canuto, D.; Cerdà-Alberich, L.; et al. 

Independent Validation of a Deep Learning nnU-

Net Tool for Neuroblastoma Detection and 

Segmentation in MR Images. Cancers 2023, 15, 

1622. 

To locate and segment

neuroblastic tumors on T2/T2-

weighted MRI images, regardless

of the location and characteristics

of the MR scanner.

DSC at diagnosis is 0.999, and

after treatment is 0.902.
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Radiomics

Radiomic features extraction 

Gray-level discretization
Fixed bin width to maintain a direct 

relationship with the original intensity 
scale

Intensity
• Minimum
• Maximum
• Mean
• Variance
• Kurtosis
• Median

Shape
• Volume
• Elongation
• Sphericity
• Surface area
• Surface-Volume Ratio
• Flatness

• SD
• RMS
• Skewness
• Energy
• Entropy
• Uniformity

Gray Level Cooccurence Matrix (GLCM)
• Joint energy
• Contrast
• Joint entropy
• Homogeneity
• Correlation

Gray Level Run Length Matrix (GLRLM)
• Small area emphasis
• Large area emphasis
• Gray level non-uniformity
• Size zone non-uniformity
• Zone percentage

Gray Level Size Zone Matrix (GLSZM)
• Short run emphasis
• Long run emphasis
• Gray level non-uniformity
• Run length non-uniformity
• Run percentage

• Autocorrelation
• Sum average
• Sum variance
• Maximum probability

• Inverse variance
• Difference entropy
• Cluster Prominence

• Gray level variance
• Zone variance
• Zone entropy
• Low / High gray level zone 

emphasis

• Run entropy
• Run variance
• Low gray level run 

emphasis
• High gray level run emphasis 5/total
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Modeling pipeline
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Nested-ComBat methodology to harmonize radiomic features

Corrections by Manufacturer and Magnetic Field Strength

Feature Harmonization
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Multimodal AI models
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Features Patients

C Index Time-Dependent AUC

Test Test

Risk Group INRG 375 0.71 ± 0.03 0.71 ± 0.05

Radiomics T2W 513 0.66 ± 0.01 0.66 ± 0.06

Clinical Variables 513 0.76 ± 0.04 0.77 ± 0.02

Radiomics T2W + 

Clinical Variables
513 0.79 ± 0.05 0.78 ± 0.06

Radiomics T2W + 

Clinical Variables 

+ Tumor Growth

513 0.90 ± 0.04 0.89 ± 0.03

Model used: Random Survival Forest

Survival analysis is a collection of statistical procedures for data analysis where the outcome variable of 

interest is time until an event (death) occurs.

Cross-validation results of the survival models

Explainability of the multimodal survival model
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Clinical decision support system
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Oncologists use the 
PRIMAGE platform as 

a clinical decision 
support system.

AI tumor detection 

and segmentation
AI model prediction

Overall Survival Analysis

Area under the ROC curve
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Input variables:

• Sex: Female

• Age: 139 months

• LDH (IU/L): 551

• Histology: Neuroblastoma

• Degree of differentiation: Poorly 

differentiated

• MYCN: Not amplified

• Primary tumor location: Abdomen

• INRG: High

• INSS: 4

Clinical outcomes:

• Overall survival: 

1484 days

• Status: Alive

Input variables:

• Sex: Female

• Age: 19 months

• LDH (IU/L): 16400

• Histology: Neuroblastoma

• Degree of differentiation: Not differentiated

• MYCN: Amplified

• Primary tumor location: Abdomen

• INRG: High

• INSS: 4

Clinical outcomes:

• Overall survival: 

201 days

• Status: Dead
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• Foundation Models: Large-scale AI models trained on diverse, unannotated data that can be fine-tuned 

for specific applications.

• Generative AI: A subset of foundation models that synthesizes new data (text, images, or multi-modal 

content).

Foundation models 

are trained using 

data with little to no 

annotations
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Why foundation models 
for oncology?
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• Traditional AI models require large amounts of labeled data, which is expensive and time-consuming.

• Foundation models leverage self-supervised learning to extract knowledge from vast, unstructured datasets.

• Enables transfer learning across clinical tasks with minimal fine-tuning.
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Automated Image 

Interpretation

Enhancing detection of 

abnormalities (e.g., 

nodules in chest X-rays, 

tumors in MRI scans).

Synthetic Data 

Generation

Addressing data scarcity 

by creating high-fidelity 

synthetic medical images.

Workflow Optimization

AI-driven report 

generation, automated 

segmentation, and 

decision support.

Multimodal Learning

Integrating imaging with 

genomics and clinical 

data for holistic disease 

modeling.

Med-PaLM can 

synthesize and 

communicate 

information from images 

like chest X-rays, 

mammograms, and more 

to help doctors provide 

better patient care. 



ACIM
HUP La Fe Synthetic Data for Oncology

13/total

AI can generate high-quality 

synthetic images to train models 

without requiring extensive real 

patient data.

Applications include:

• Balancing datasets to 

mitigate biases.

• Enhancing rare disease 

detection.

• Preserving patient 

privacy while enabling AI 

model development.
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Multimodal Foundation 

Model

Tokenizer
Token to 

Embedding

*Prompt: “A T2-weighted MR image of 

a 5-year old poorly differentiated 

neuroblastoma patient with INRG = 

High”

Text 

Embeddings

Conditioned 

latent U-Net

Latents

Conditioned 

Latents

VAE decoder

Scheduler 

algorithm to 

add noise
Output image

(512 x 512 x 64)

Repeat N scheduler steps

Gaussian Noise

(512 x 512 x 64) Contrastive 

Learning 

+

Latent 

Diffusion

Latent Seed

*Other allowed prompts can be medical 

images for the generation of a set of similar 

images using the embeddings obtained from 

the Multimodal Foundation Model
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Multimodal AI for 
Precision Medicine
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• Foundation models integrate multiple data types to improve diagnostic accuracy.

• Enables deeper understanding of disease mechanisms beyond single-modality analysis.
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Multimodal AI for 
Precision Medicine
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Foundation models are becoming increasingly common in oncology research. 

However, the biases affecting other models also affect foundation models: It is important to 

pursue their development while ensuring good training and continuous validation. 
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• Bias and Fairness: Models trained on 

biased datasets can lead to disparities in 

patient outcomes.

• Explainability & Transparency: Black-box 

models limit clinical trust and adoption.

• Generalization Issues: Performance 

drops when applied to external datasets or 

new clinical settings.

• Ethical & Regulatory Hurdles: 

Compliance with AI governance 

frameworks like the EU AI Act.

• Data Privacy & Security: Protecting 

patient data in AI-driven workflows.
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CHAIMELEON Project

A user-friendly platform developed to improve user experience 
during clinical validation (timing per case evaluated with/without AI, 
potential result biases, feedback and comments through a survey.
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BREASTLUNG RECTUMCOLONPROSTATE
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• Cases: 1,553 (5 tumors). 
• Observers: 77 (34 radiologist and 43 

physicians).
• Different Experience Level (14: <5 

year, 7: 5-10 years, 56: >10 years).
• 54% improved, 17% unchanged, 29% 

worsened.
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✓ AI will increasingly act as a virtual assistant for oncologists.

✓ Foundation models and GenAI will evolve to provide real-time, personalized diagnostics.

✓ Integration with radiology, robotic surgery, digital pathology, and genomics will reshape 

precision medicine.

✓ AI's success depends on human trust: Transparency, accountability, and validation will be the 

determining factors for adoption.

✓ The biggest challenge is not just building better AI but rethinking how we integrate AI into the 

clinical workflow in ways that are meaningful, ethical, and sustainable.

✓ Future AI ecosystems will rely on collaboration (among AI developers, clinicians, and 

regulators) and continuous validation.
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