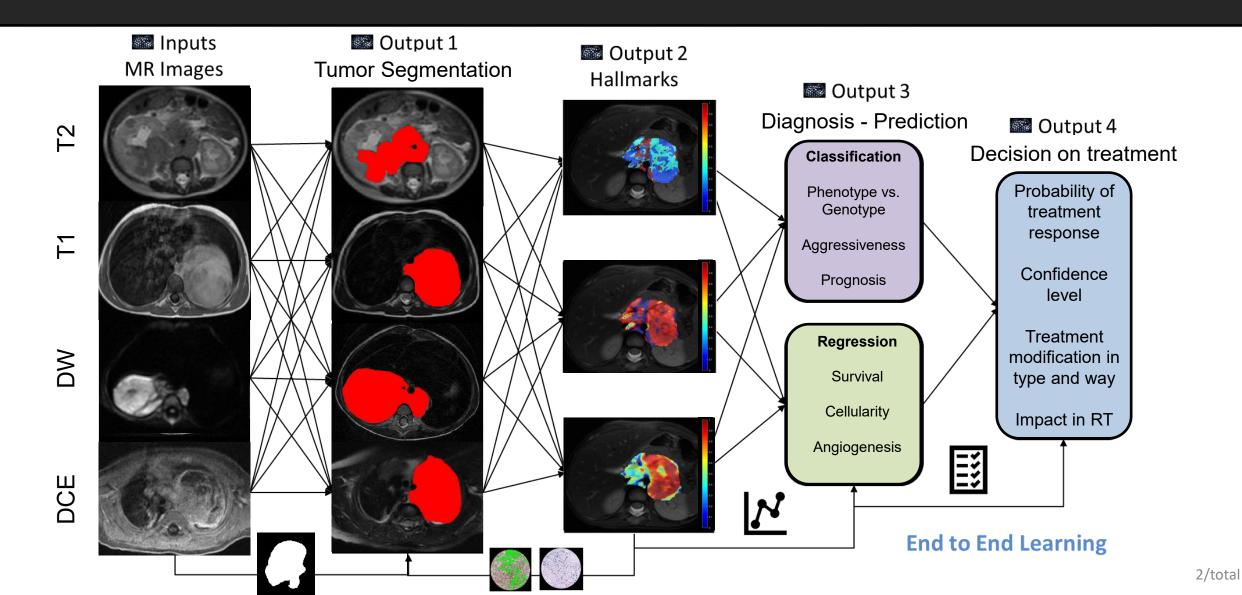


The Influence of AI in Oncology Multidisciplinary Teams Decisions

Leonor Cerdá Alberich, PhD

Co-PI and Head of Computing & AI @ Biomedical Imaging Research Group La Fe Health Research Institute (Valencia)

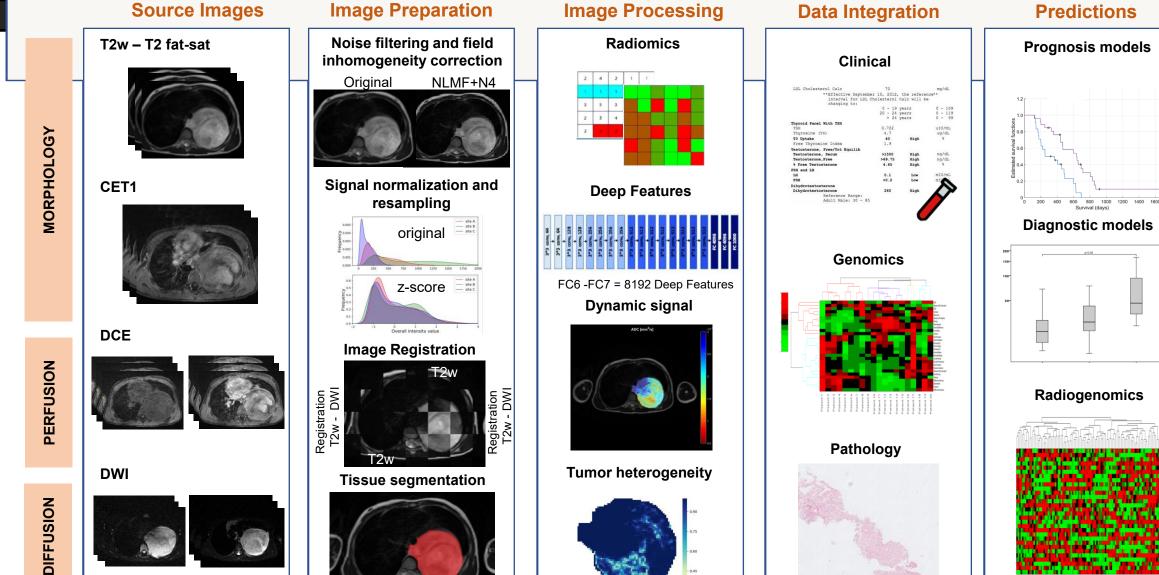
11.06.2025

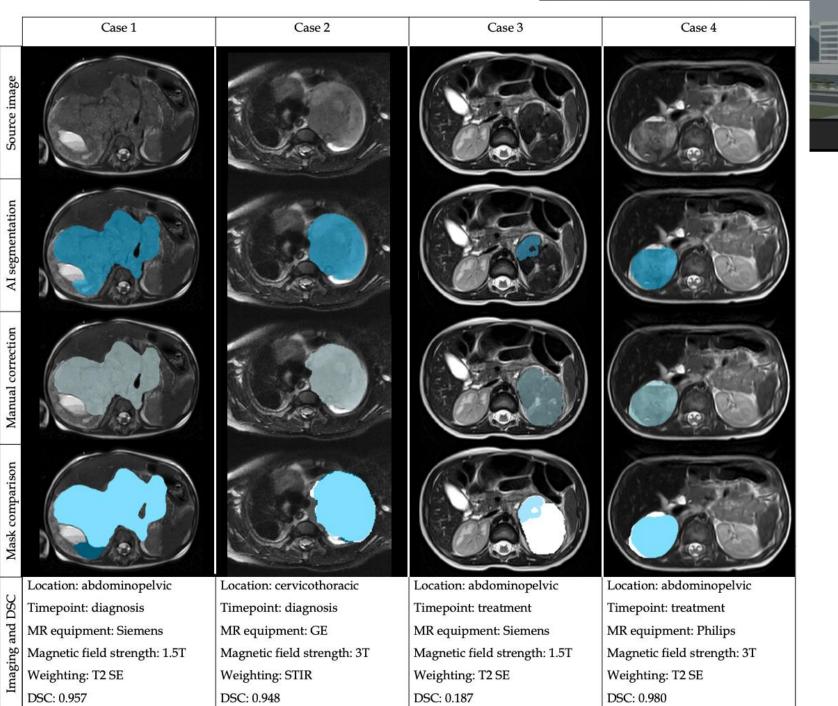


Data Integration

Image processing pipelin

Predictions



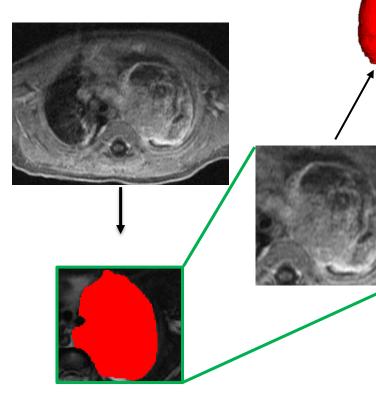


Al detection and segmentation

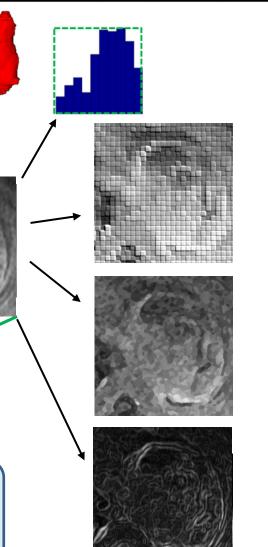
To locate and segment neuroblastic tumors on T2/T2weighted MRI images, regardless of the location and characteristics of the MR scanner.

DSC at diagnosis is 0.999, and after treatment is 0.902.

Veiga-Canuto, D.; Cerdà-Alberich, L.; et al. Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images. *Cancers* **2023**, *15*, 1622.



Gray-level discretization Fixed bin width to maintain a direct relationship with the original intensity scale



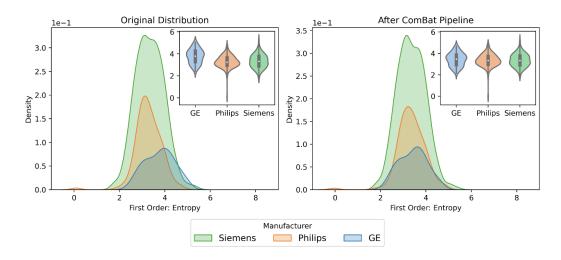
 Shape Volume Elongation Sphericity Surface area Surface-Volume Ratio Flatness 	Intensity• Minimum• SD• Maximum• RMS• Mean• Skewness• Variance• Energy• Kurtosis• Entropy• Median• Uniformity		
Gray Level Cooccurence Matrix (GLCM)Joint energyContrastJoint entropyJoint entropyHomogeneityCorrelationMaximum probability			
Gray Level Run Length Matrix (GLRLM)• Small area emphasis• Gray level variance• Large area emphasis• Zone variance• Gray level non-uniformity• Zone entropy• Size zone non-uniformity• Low / High gray level zone emphasis			
 Gray Level Size Zone Matrix (G Short run emphasis Long run emphasis Gray level non-uniformity Run length non-uniformity Run percentage 	 Run entropy Run variance		

THE PROPERTY OF

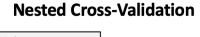
Radiomics

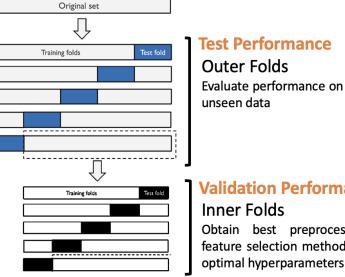
5/total

Feature Harmonization



Nested-ComBat methodology to harmonize radiomic features





Validation Performance Obtain best preprocessing, feature selection method and

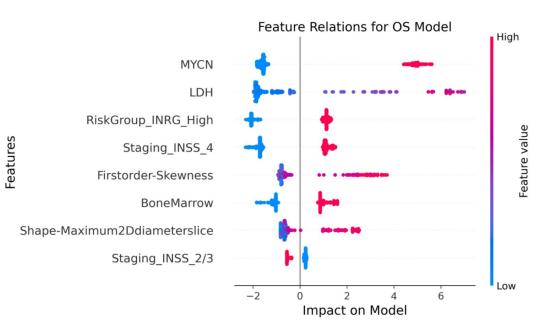
Survival analysis is a collection of statistical procedures for data analysis where the outcome variable of interest is time until an event (death) occurs.

Cross-validation results of the survival models

Features	Patients	C Index	Time-Dependent AUC
		Test	Test
Risk Group INRG	375	0.71 ± 0.03	0.71 ± 0.05
Radiomics T2W	513	0.66 ± 0.01	0.66 ± 0.06
Clinical Variables	513	0.76 ± 0.04	0.77 ± 0.02
Radiomics T2W + Clinical Variables	513	0.79 ± 0.05	0.78 ± 0.06
Radiomics T2W + Clinical Variables + Tumor Growth	513	0.90 ± 0.04	0.89 ± 0.03

Explainability of the multimodal survival model

dal Al models



Location: abdominopelvic

MR equipment: Siemens

Magnetic field strength: 1.5T Weighting: T2 SE

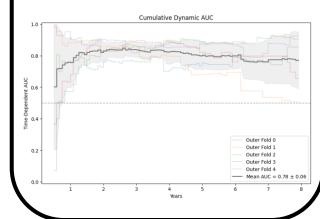
DSC: 0.957

Timepoint: diagnosis

SC

pu

Al tumor detection Al model prediction and segmentation **Overall Survival Analysis** Kaplan-Meier Curves by Predicted Risk Groups 0.8 0.6 S 0.4 0.2 Risk Group - Low Medium High 0.0 4 3 Time after Diagnosis (Years) Area under the ROC curve



Neuroblastoma Panel

Diagnosis stratification

Clinical decision support system

	Not given	Patient ID	95F55FA5	Predicted Risk Score
Site		Birthdate	undefined	Predicted Risk Score
Study Date	13-03-2018	Age (months)	139	Intermediate.
Report Date	30-08-2023	Sex	Female	Intermediate

Patient Characteristics

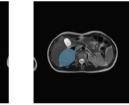
Age (months)	139	
Sex	Female	_
LDH (U/I)	551.0	_
MYCN status	Not amplified	_
Risk group INRG	High	_
INSS	4	
Bone marrow aspirate	Positive	
Bone marrow trephine	Positive	
Tumor localization	Abdomen	_
Tumor histology type	Neuroblastoma	_
Grade of differentiation	Poorly differentiated	

Imaging variables

Skewness	0.45
Maximum 2D diameter	97.00
GLCM informational measure of correlation	0.63
GLSZM zone percentage	0.02
GLRLM graylevel non-uniformity	2922.55
 Skewness measures the asymmetry of the distribution 	
mean intensity value. 2. Maximum 2D diameter measures the largest trans lesion	
2. Maximum 2D diameter measures the largest trans	versal diameter of the. zones and number of
 Maximum 2D diameter measures the largest translesion Zone percentage measures the ratio of number of 	versal diameter of the. zones and number of

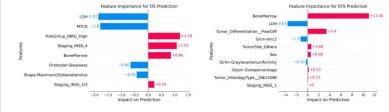
Representative tissue

Primary tumor automatic segmentation, defining the area where the radiomics features are extracted.



Tumor volume:157.49 cm3 Risk prediction

Clinical and radiomics features: importance of the clinical and radiomics features to make the final OS and EFS prediction.



This report aims to be a prototype of how the neuroblastoma clinical decision support system will look like. Its intended use is for research purposes only.

Oncologists use the PRIMAGE platform as a clinical decision support system.

Neuroblastoma - Diagnosis stratification Diagnosis stratification (05 and EFS prediction Neuroblastoma)

Input variables:

- Sex: Female
- Age: 139 months
- LDH (IU/L): 551
- Histology: Neuroblastoma
- Degree of differentiation: Poorly differentiated
- MYCN: Not amplified
- Primary tumor location: Abdomen
- INRG: High
- INSS: 4

Clinical outcomes:

- Overall survival: 1484 days
- Status: Alive

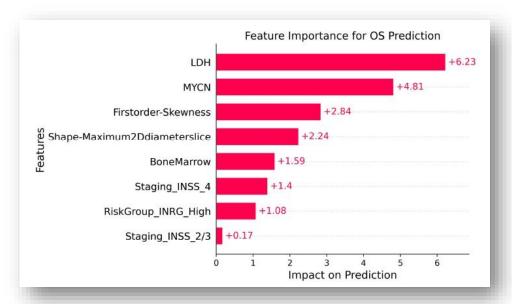
Input variables:

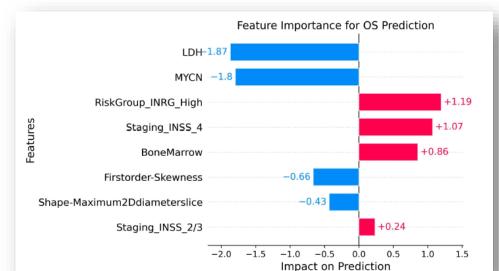
- Sex: Female
- Age: 19 months
- LDH (IU/L): 16400
- Histology: Neuroblastoma
- Degree of differentiation: Not differentiated
- MYCN: Amplified
- Primary tumor location: Abdomen
- INRG: High
- INSS: 4

Model explainability

Clinical outcomes:

- Overall survival: 201 days
- Status: Dead

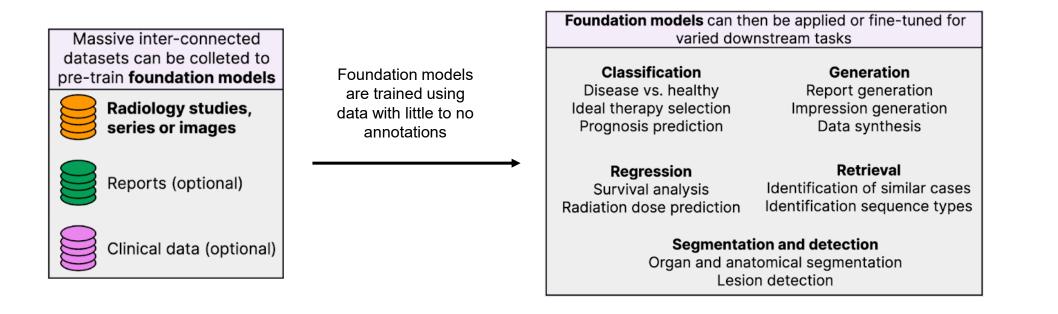


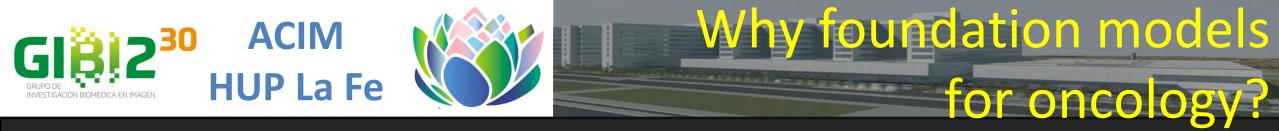


• Foundation Models: Large-scale AI models trained on diverse, unannotated data that can be fine-tuned for specific applications.

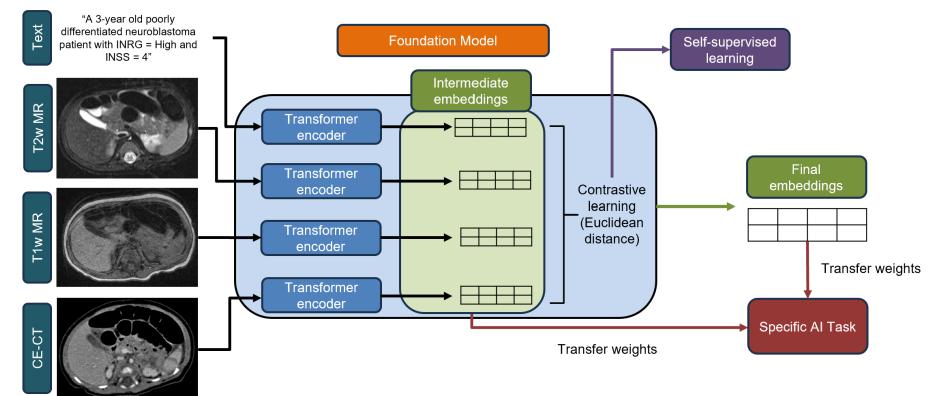
Foundation models and GenAl

• Generative AI: A subset of foundation models that synthesizes new data (text, images, or multi-modal content).





- Traditional AI models require large amounts of labeled data, which is expensive and time-consuming.
- Foundation models leverage self-supervised learning to extract knowledge from vast, unstructured datasets.
- Enables transfer learning across clinical tasks with minimal fine-tuning.



Applications in Radiology

Automated Image Interpretation

Enhancing detection of abnormalities (e.g., nodules in chest X-rays, tumors in MRI scans).

Multimodal Learning

Integrating imaging with genomics and clinical data for holistic disease modeling.

Synthetic Data Generation

Addressing data scarcity by creating high-fidelity synthetic medical images.

Workflow Optimization

Al-driven report generation, automated segmentation, and decision support.

Med-Pal M can synthesize and communicate information from images like chest X-rays, mammograms, and more to help doctors provide better patient care.

Can you write me a report analyzing this chest X-ray?

Findings:

- · Devices: None.
- · Lungs: No pneumothorax. No substantial pleural effusion. Lungs appear clear.
- · Cardiomediastinal: Normal heart size. Mediastinal contours within normal limits.
- Other: No acute skeletal abnormality.

Impression:

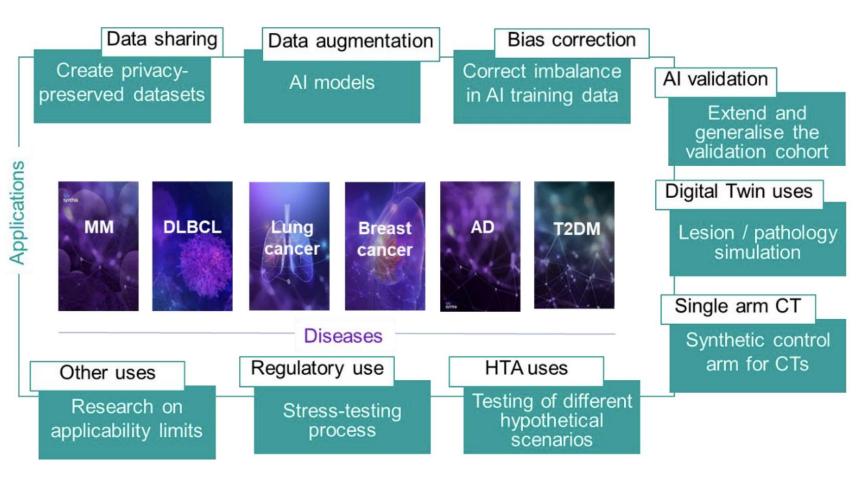
No active disease seen in chest.

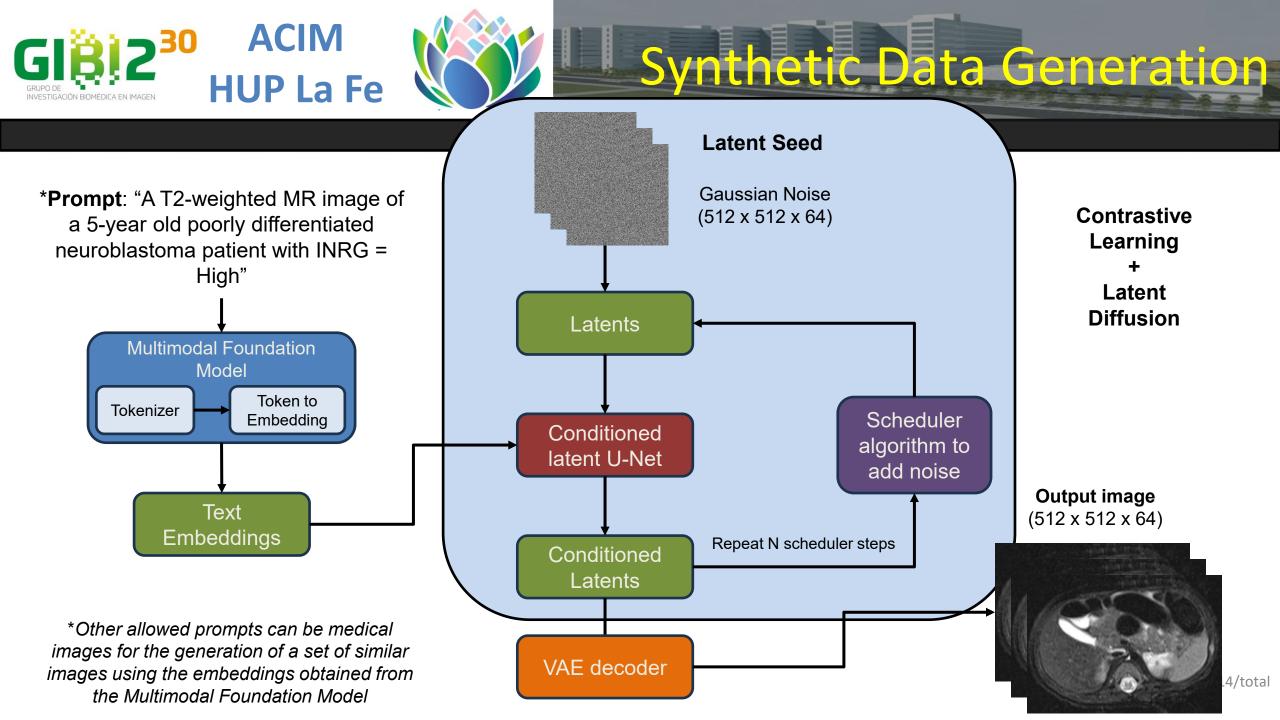
Synthetic Data for Oncology

Al can generate high-quality synthetic images to train models without requiring extensive real patient data.

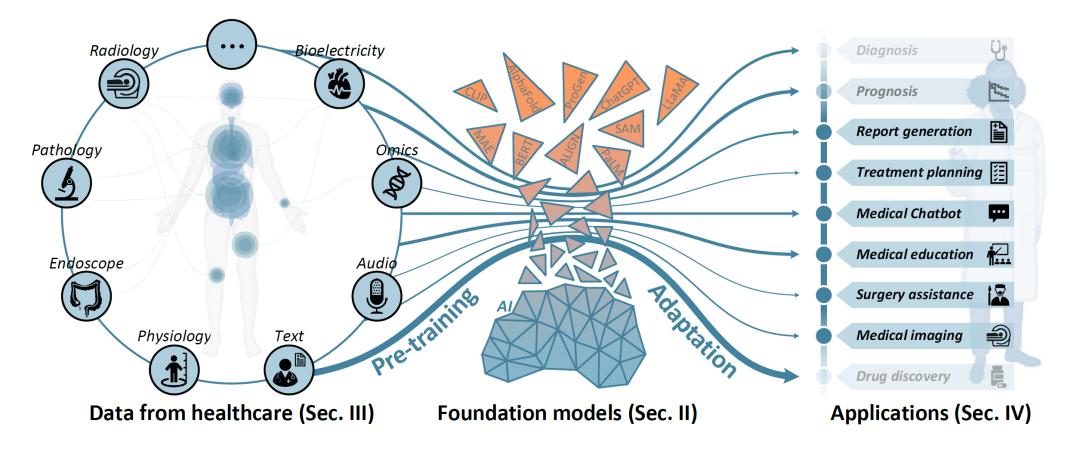
Applications include:

- Balancing datasets to mitigate biases.
- Enhancing rare disease detection.
- Preserving patient privacy while enabling AI model development.





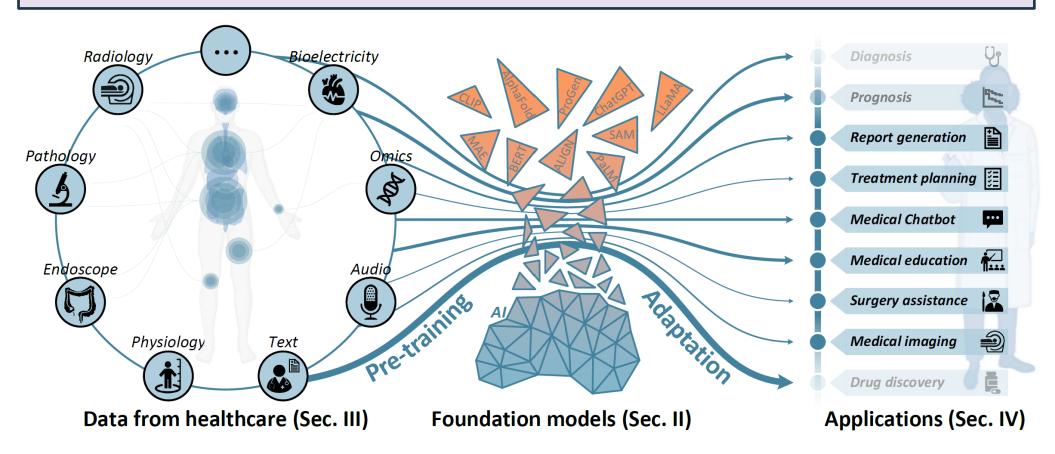
- Foundation models integrate multiple data types to improve diagnostic accuracy.
- Enables deeper understanding of disease mechanisms beyond single-modality analysis.



 Multimodal Al for

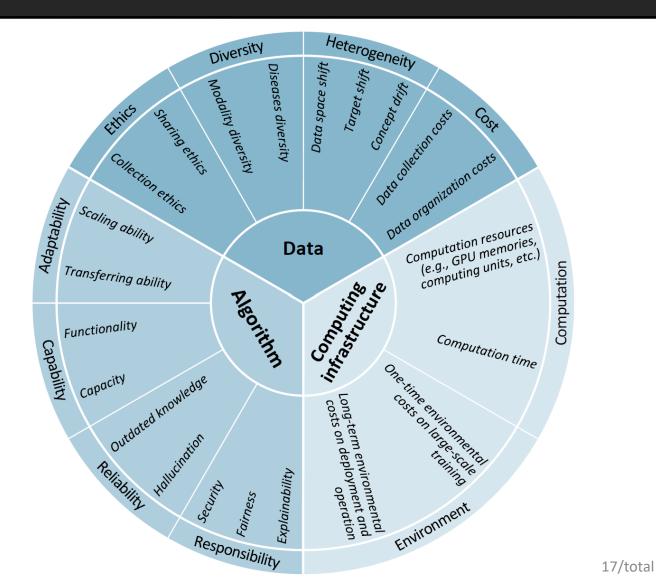
 Precision Medicine

Foundation models are becoming increasingly common in oncology research. However, the biases affecting other models also affect foundation models: It is important to pursue their development while ensuring good training and continuous validation.



Challenges and Pitfalls

- **Bias and Fairness**: Models trained on biased datasets can lead to disparities in patient outcomes.
- Explainability & Transparency: Black-box models limit clinical trust and adoption.
- **Generalization Issues**: Performance drops when applied to external datasets or new clinical settings.
- Ethical & Regulatory Hurdles: Compliance with AI governance frameworks like the EU AI Act.
- **Data Privacy & Security**: Protecting patient data in Al-driven workflows.



In Silico Clinical Validation

CHAIMELEON Project chaime ORT HANC 🔳 📕 Open Health Imaging Foundation **DICOM VIEWER** FED BY THE PACS AND WITH ACCESS TO CLINICAL DATA AND AI RESULTS PACS NDEXING FROM FILESYSTEM COLON RECTUM BREAST LUNG THE MODES MODES MODES MODES CHAIMFLEO DATASETS 123 123 123 123 COLON BREAST PROSTATE RECTUM LUNG POSTGRES EXTENSIONS EXTENSIONS EXTENSIONS EXTENSIONS EXTENSIONS chaimelee JS DASHBOARD **USER INTERFACE** SAPI API DATASETS a fail UPV

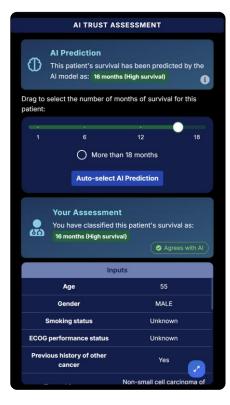
A user-friendly platform developed to improve user experience during clinical validation (timing per case evaluated with/without AI, potential result biases, feedback and comments through a survey.

In Silico Clinical Validation

PROSTATE

	AI TRUST ASSESSMENT			
٩	Al Prediction This patient's image has been analyzed by the Al model and predicted as: High Risk			
Select th	Select the risk for this patient:			
	Low High Risk Risk			
	Auto-select	Al Prediction		
Your Assessment You have classified this patient as: High Risk @ Agrees with Al				
		Agrees with AI		
	Inj	Agrees with Al		
	in; Age			
Pi		puts		
Pi	Age	outs 75		
PI	Age revious Cancer	75 No		
PI	Age revious Cancer PSA	50uts 75 No 9.79 (ng/mL)		
P	Age revious Cancer PSA PSA Date	75 No 9.79 (ng/mL) 2015-01-01 ECOG performance status -		
P1	Age revious Cancer PSA PSA Date ECOG	75 No 9.79 (ng/mL) 2015-01-01 ECOG performance status - grade 0		

LUNG



BREAST

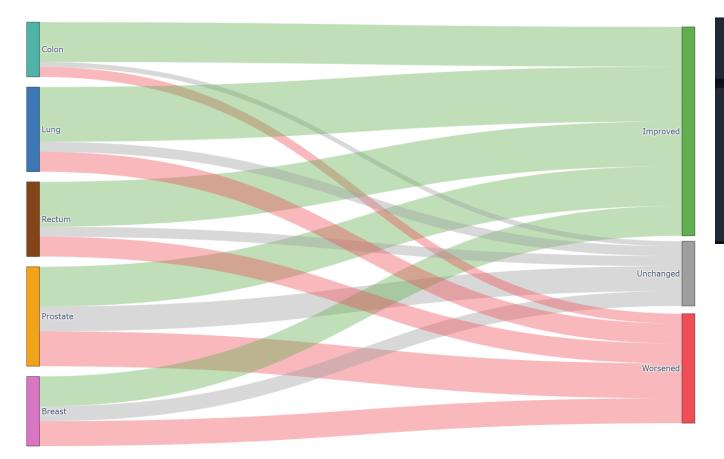
AI TRUST ASSESSMENT				
Φ	Al Prediction This patient's image has been analyzed by the Al model and predicted as: Ductal carcinoma in situ (DCIS)			
Select th	Select the histology subtype for this patient:			
	Invasive ductal carcine	oma (IDC) 🛛 🔍		
	Auto-select Al Prediction			
	Your Assessment You have classified th Invasive ductal carcin	nis patient as:		
	Inpu	its		
	Age	67		
	Gender	FEMALE		
Previ	ous history of other cancer	Yes		
ECOG	Performance status	Unknown		
	Clinical T	Unknown		
	Clinical N	Unknown		
	Clinical M	Unknown		

COLON

AI TRUST ASSESSMENT				
٩	Al Prediction This patient's image has been analyzed by the Al model and predicted as: T1-T2 N0 M0 (
Select the pTNM for this patient:				
T1-T2	2 4 N0 4 M0 4			
*	View TNM Info Auto-select AI Prediction			
	Your Assessment You have classified this patient as: T1-T2 N0 M0 @ Agrees with A1			
B				
.				
€ġ		Agrees with Al		
•9	T1-T2 N0 M0	Agrees with Al		
Previo	T1-T2 N0 M0	Agrees with AI Agrees with AI 93 FEMALE		
	T1-T2 N0 M0 Age Gender Pus history of other	Agrees with Al Inputs 93 FEMALE No		
	Age Gender cancer	Agrees with Al Inputs 93 FEMALE No		
ECOG	Age Gender Nus history of other cancer Performance statu	Agrees with Al Inputs 93 FEMALE No S Unknown		
ECOG	Age Gender nus history of other cancer Performance statu ECOG Date	Agrees with Al Inputs 93 FEMALE No Unknown Not evaluated No		

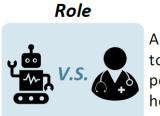
	AI TRUST ASSESSMENT			
	AI Prediction			
Ф	model and predicted as	s been analyzed by the Al :: Vascular Invasion: Yes		
	Mesorectal Invasion: Yes	6		
Vascular	Vascular Extramural Invasion:			
	No	Yes		
Mesorec	tal Fascia Invasion:			
	No	Yes		
	Auto-select Al	Prediction		
	Your Assessment			
	You have classified this	s patient as:		
അ	Vascular Invasion: Yes	Mesorectal Invasion: No		
		Disagrees with AI		
Inputs				
	Age	50		
Gender		MALE		
Previous history of other cancer		No		
ECOG	Performance status	Unknown		
	ECOG Date	Not evaluated		

In Silico Clinical Validation



- Cases: 1,553 (5 tumors).
- Observers: 77 (34 radiologist and 43 physicians).
- Different Experience Level (14: <5 year, 7: 5-10 years, 56: >10 years).
- 54% improved, 17% unchanged, 29% worsened.

The Future of AI in Oncology

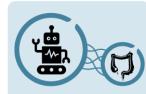


Al <u>versus</u> humans to *automatically* perform *repetitive* healthcare tasks

Implementation

<u>Static</u> AI model is fixed to **specific** healthcare tasks

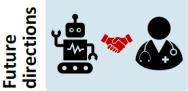
Application



In <u>ideal settings</u> for *specific issues* and *certain situations*

Emphasis

Explore Al methods for **capability**



Al <u>cooperates with</u> humans to **jointly** energize **challenging** healthcare tasks

<u>Dynamic</u>Al model adapts to **general** healthcare tasks

In <u>real world</u> for complex issues and uncertain situations

<u>Trust</u> AI behaviors for *responsibility*

- ✓ AI will increasingly act as a **virtual assistant** for oncologists.
- ✓ Foundation models and GenAI will evolve to provide real-time, personalized diagnostics.
- ✓ Integration with radiology, robotic surgery, digital pathology, and genomics will reshape precision medicine.
- ✓ Al's success depends on human trust: Transparency, accountability, and validation will be the determining factors for adoption.
- ✓ The biggest challenge is not just building better AI but rethinking how we integrate AI into the clinical workflow in ways that are meaningful, ethical, and sustainable.
- Future Al ecosystems will rely on collaboration (among Al developers, clinicians, and regulators) and continuous validation.

Leonor Cerdá Alberich, PhD | leonor cerda@iislafe.es

Biomedical Imaging Research Group (Valencia)

